SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "swepub ;lar1:(oru);pers:(Broxvall Mathias);pers:(Rashid Jayedur)"

Search: swepub > Örebro University > Broxvall Mathias > Rashid Jayedur

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bordignon, Mirko, et al. (author)
  • Seamless integration of robots and tiny embedded devices in a PEIS-ecology
  • 2007
  • In: IEEE/RSJ international  conference on intelligent robots and systems, IROS 2007. - New York : IEEE. - 9781424409129 ; , s. 3101-3106
  • Conference paper (peer-reviewed)abstract
    • The fields of autonomous robotics and ambient intelligence are converging toward the vision of smart robotic environments, in which tasks are performed via the cooperation of many networked robotic devices. To enable this vision, we need a common communication and cooperation model that can be shared between robotic devices at different scales, ranging from standard mobile robots to tiny embedded devices. Unfortunately, today's robot middlewares are too heavy to run on tiny devices, and middlewares for embedded devices are too simple to support the cooperation models needed by an autonomous smart environment. In this paper, we propose a middleware model which allows the seamless integration of standard robots and simple off-the-shelf embedded devices. Our middleware is suitable for building truly ubiquitous robotics applications, in which devices of very different scales and capabilities can cooperate in a uniform way. We discuss the principles and implementation of our middleware, and show an experiment in which a mobile robot, a commercial mote, and a custom-built mote cooperate in a home service scenario.
  •  
2.
  • Rashid, Jayedur, 1979-, et al. (author)
  • A middleware to integrate robots, simple devices and everyday objects into an ambient ecology
  • 2012
  • In: Pervasive and Mobile Computing. - : Elsevier. - 1574-1192 .- 1873-1589. ; 8:4, s. 522-541
  • Journal article (peer-reviewed)abstract
    • The fields of ambient intelligence, distributed robotics and wireless sensor networks are converging toward a common vision, in which ubiquitous sensing and acting devices cooperate to provide useful services in the home. These devices can range from sophisticated mobile robots to simple sensor nodes and even simpler tagged everyday objects. In this vision, a milkbox left on the table after the user has left the home could ask the service of a mobile robot to be placed back in the refrigerator. A missing ingredient to realize this vision is a mechanism that enables the communication and interoperation among such highly heterogeneous entities. In this paper, we propose such a mechanism in the form of a middleware able to integrate robots, tiny devices and augmented everyday objects into one and the same system. The key moves to cope with heterogeneity are: the definition of a tiny, compatible version of the middleware, that can run on small devices; and the concept of object proxy, used to make everyday object accessible within the middleware. We describe the concepts and implementation of our middleware, and show a number of experiments that illustrate its performance.
  •  
3.
  • Rashid, Jayedur, et al. (author)
  • Digital representation of everyday objects in a robot ecology via proxies
  • 2008
  • In: IEEE/RSJ international conference on intelligent robots and systems, 2008, IROS 2008. - 9781424420575 ; , s. 1908-1914
  • Conference paper (peer-reviewed)abstract
    • Robotic middlewares increasingly allow the seamless integration of multiple heterogeneous robots into one distributed system. Unfortunately, very simple devices like tagged everyday objects and smart objects are left orphan in this otherwise pervasive trend. We claim that the inclusion of simple everyday objects as part of distributed robot systems would have many advantages, and propose a design pattern to allow this inclusion. We make this pattern concrete by describing an implementation of it using a specific multi-robot middleware, called PEIS-Ecology Middleware. We also show an illustrative experiment which integrates everyday objects in a smart home equipped with mobile robots as well as more advanced distributed sensor nodes.
  •  
4.
  • Rashid, Jayedur, et al. (author)
  • Indirect reference : reconfiguring distributed sensors and actuators
  • 2010
  • In: 2010 IEEE international conference on sensor networks, ubiquitous, and trustworthy computing. - : IEEE conference proceedings. - 9780769540498 ; , s. 284-290
  • Conference paper (peer-reviewed)abstract
    • Many sensor networks have lately included actuation as an important property of the nodes. With the introduction of actuation, new requirements are posed on these nodes in terms of reconfiguration of collaboration patterns. The sensors/actuators are very often connected to various heterogeneous hardware that have a few KBs of memory, low processing power and communication range, such as WSN motes. Also, for many applications networks of small and simple sensor and actuator nodes need to cooperate with networked robotic devices, which leads to further requirements to enable collaboration between devices of different scales. In this networked robot and sensor/actuator infrastructure, tasks are performed by the cooperation of multiple devices. Dynamically changing availability of devices as well as changes of tasks lead to a need of reconfiguration of the devices at runtime. Therefore a mechanism should be available in the communication level, which affords reconfiguration ability to the sensor/actuator nodes as well as robots. In this article, a concept called indirect reference is proposed, which facilitates dynamic reconfiguration of sets of distributed devices. We describe here also an implementation of the concept on a ubiquitous robotic middleware, which offers seamless integration of robots and WSN motes like tiny embedded devices with an example.
  •  
5.
  • Rashid, Md. Jayedur, 1979- (author)
  • Extending a networked robot system to include humans, tiny devices, and everyday objects
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • In networked robot systems (NRS), robots and robotic devices are distributed in the environment; typically tasks are performed by cooperation and coordination of such multiple networked components. NRS offer advantages over monolithic systems in terms of modularity, flexibility and cost effectiveness, and they are thus becoming a mainstream approach to the inclusion of robotic solutions in everyday environments. The components of a NRS are usually robots and sensors equipped with rich computational and communication facilities. In this thesis, we argue that the capabilities of a NRS would greatly increase if it could also accommodate among its nodes simpler entities, like small ubiquitous sensing and actuation devices, home appliances, or augmented everyday objects. For instance, a domestic robot needs to manipulate food items and interact with appliances. Such a robot would benefit from the ability to exchange information with those items and appliances in a direct way, in the same way as with other networked robots and sensors. Combining such highly heterogeneous devices inside one NRS is challenging, and one of the major challenges is to provide a common communication and collaboration infrastructure. In the field of NRS, this infrastructure is commonly provided by a shared middleware. Unfortunately, current middlewares lack the generality needed to allow heterogeneous entities such as robots, simple ubiquitous devices and everyday objects to coexist in the same system. In this thesis we show how an existing middleware for NRS can be extended to include three new types of “citizens” in the system, on peer with the other robots. First, we include computationally simple embedded devices, like ubiquitous sensors and actuators, by creating a fully compatible tiny version of the existing robotic middleware. Second, we include augmented everyday objects or home appliances which are unable to run the middleware on board, by proposing a generic design pattern based on the notion of object proxy. Finally,we go one step further and include humans as nodes in the NRS by defining the notion of human proxy. While there exist a few other NRS which are able to include both robots and simple embedded devices in the same system, the use of proxies to include everyday objects and humans in a generic way is a unique feature of this work. In order to verify and validate the above concepts, we have implemented them in the Peis-Ecology NRS model. We report a number of experiments based on this implementation, which provide both quantitative and qualitative evaluations of its performance, reliability, and interoperability.
  •  
6.
  • Saffiotti, Alessandro, 1960-, et al. (author)
  • The PEIS-ecology project : vision and results
  • 2008
  • In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2008. - New York : IEEE. - 9781424420575 ; , s. 2329-2335
  • Conference paper (peer-reviewed)abstract
    • The vision of an Ecology of Physically Embedded Intelligent Systems, or PEIS-Ecology, combines insights from the fields of autonomous robotics and ambient intelligence to provide a new approach to building robotic systems in the service of people. In this paper, we present this vision, and we report the results of a four-year collaborative research project between Sweden and Korea aimed at the concrete realization of this vision. We focus in particular on three results: a robotic middleware able to cope with highly heterogeneous systems; a technique for autonomous self-configuration and re-configuration; and a study of the problem of sharing information of both physical and digital nature.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view